The formation of coacervates through phase separation of oppositely charged polyelectrolytes (PEs) is critical for understanding biological condensates and developing responsive materials. Traditionally, coacervates are viewed as spherical droplets with growth dynamics resembling liquid-liquid phase separation. However, our fluid particle dynamics simulations incorporating hydrodynamic and electrostatic interactions challenge this perspective. Here, we find that oppositely charged PEs form a percolated network even in semi-dilute solutions, coarsening with a unique growth law, ℓ ∝ t