Electronic skins (e-skins) seek to go beyond the natural human perception, e.g., by creating magnetoperception to sense and interact with omnipresent magnetic fields. However, realizing magnetoreceptive e-skin with spatially continuous sensing over large areas is challenging due to increase in power consumption with increasing sensing resolution. Here, by incorporating the giant magnetoresistance effect and electrical resistance tomography, we achieve continuous sensing of magnetic fields across an area of 120 × 120 mm