Understanding the genetic basis of neuron-glia interactions is essential to comprehend the function of glia. Recent studies on Drosophila antennal glia Mz317 has shown their role in olfactory perception. In the antenna, the Mz317-type glia tightly envelops the somas of olfactory sensory neurons and axons already covered by wrapping glia. Here, we investigate candidate genes involved in glial regulation in olfactory reception of Drosophila. Targeted transcriptional profiling reveals that Mz317 glial cells express 21% of Drosophila genes emphasizing functions related to cell junction organization, synaptic transmission, and chemical stimuli response. Comparative gene expression analysis with other glial cell types in both the antenna and brain provides a differential description based on cell type, offers candidate genes for further investigation, and contributes to our understanding of neuron-glia communication in olfactory signaling. Additionally, similarities between the molecular signatures of peripheral glia in Drosophila and vertebrates highlight the utility of model organisms in elucidating glial cell functions in complex systems.