Establishing the effect of computed tomography reconstruction kernels on the measure of bone mineral density in opportunistic osteoporosis screening.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Steven K Boyd, Bryn E Matheson

Ngôn ngữ: eng

Ký hiệu phân loại: 152.41 Love and affection

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 102895

Opportunistic computed tomography (CT) scans, which can assess relevant bones of interest, offer a potential solution for identifying osteoporotic individuals. However, it has been well documented that image protocol parameters, such as reconstruction kernel, impact the quantitative analysis of volumetric bone mineral density (vBMD) from CT scans. The purpose of this study was to investigate the impact that CT reconstruction kernels have on quantitative results for vBMD from clinical CT scans using phantom and internal calibration. 45 clinical CT scans were reconstructed using the standard kernel and seven alternative kernels: soft, chest, detail, edge, bone, bone plus and lung [GE HealthCare]. Two methods of image calibration, internal and phantom, were used to calibrate the scans. The total hip and fourth lumbar vertebra (L4) were extracted from the scans via deep learning segmentation. Integral vBMD was calculated based on both calibration techniques from CT scans reconstructed with the eight kernels. Linear regression and Bland-Altman analyses were used to determine the coefficient of determination [Formula: see text] and to quantify the agreement between the different kernels. Differences between the reconstruction kernels were determined using paired t tests, and mean differences from the standard were computed. Using internal calibration, the smoothest kernel (soft) yielded a mean difference of -0.95 mg/cc (-0.33%) compared to the reference standard at the L4 vertebra and 2.07 mg/cc (0.51%) at the left femur. The sharpest kernel (lung) yielded a mean difference of 25.36 mg/cc (9.63%) at the L4 vertebra and -25.10 mg/cc (-5.98%) at the left femur. Alternatively, using phantom calibration soft yielded higher mean differences than internal calibration at both locations, with mean differences of 1.21 mg/cc (0.42%) at the L4 vertebra and 2.53 mg/cc (0.65%) at the left femur. The most error-prone results stemmed from the use of the lung kernel, as this kernel displayed a mean difference of -21.90 mg/cc (-7.38%) and -17.24 mg/cc (-4.34%) at the L4 vertebra and femur, respectively. These results indicate when performing opportunistic CT analysis, errors due to interchanging smoothing kernels soft, chest and detail are negligible, but that interchanging between sharpening kernels (lung, bone, bone plus, edge) results in large errors that can significantly impact vBMD measures for osteoporosis screening and diagnosis.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH