BACKGROUND: Automated insertion of the cochlear implant electrode array can reduce the risk of intracochlear trauma. To address this, our group previously developed a hydraulic electrode insertion device, the Cochlea Hydrodrive (CHD), which automates the process using a syringe piston driven by an infusion pump. This study aims to characterize the hydraulic actuation process of the CHD and to preclinically evaluate its design. METHODS: A camera-based motion tracking test setup was developed to obtain hydraulic motion profiles. Various syringes were evaluated for their actuation properties and the optimal syringe was selected. The CHD design was adapted based on the selected syringe, incorporating a slotted stainless steel guide tube to surround the electrode during insertion. This enhanced design was tested in ex vivo insertion trials into human head specimens. RESULTS: The final design of the CHD demonstrated smooth and steady motion profiles at all tested velocities (0.4 mm/s, 0.1 mm/s, 0.03 mm/s). Ex vivo insertion trials confirmed these findings, with the guide tube facilitating easy alignment of the CHD in front of the round window and preventing electrode buckling. CONCLUSION: Our study validates that the CHD provides reliably smooth actuation properties despite its low complexity. The use of a guide tube appears promising and could further enhance the standardization of automated electrode insertion.