ROASMI: accelerating small molecule identification by repurposing retention data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiu-Lin Kang, Hui-Jun Liu, Li-Fang Liu, Lu-Na Shen, Fang-Yuan Sun, Gui-Zhong Xin, Ying-Hao Yin, Jia-Yi Zheng

Ngôn ngữ: eng

Ký hiệu phân loại: 297.1248 Sources of Islam

Thông tin xuất bản: England : Journal of cheminformatics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 105760

The limited replicability of retention data hinders its application in untargeted metabolomics for small molecule identification. While retention order models hold promise in addressing this issue, their predictive reliability is limited by uncertain generalizability. Here, we present the ROASMI model, which enables reliable prediction of retention order within a well-defined application domain by coupling data-driven molecular representation and mechanistic insights. The generalizability of ROASMI is proven by 71 independent reversed-phase liquid chromatography (RPLC) datasets. The application of ROASMI to four real-world datasets demonstrates its advantages in distinguishing coexisting isomers with similar fragmentation patterns and in annotating detection peaks without informative spectra. ROASMI is flexible enough to be retrained with user-defined reference sets and is compatible with other MS/MS scorers, making further improvements in small-molecule identification.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH