Impact of ultraviolet filters and polycyclic aromatic hydrocarbon from recreational activities on water reservoirs in southeast Queensland Australia.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael Bartkow, Michael Gallen, Sarit Kaserzon, Elissa O'Malley, Katrin Sturm, Cameron Veal, Rory Verhagen

Ngôn ngữ: eng

Ký hiệu phân loại: 912.01 Philosophy and theory

Thông tin xuất bản: England : Environmental toxicology and chemistry , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 105859

Water reservoirs and lakes are gaining popularity for recreation activities as populations increase and green spaces become in high demand. However, these activities may cause contamination to critical water resources. This study investigates the impact of recreational activities on the presence and concentration of polycyclic aromatic hydrocarbons (PAHs) and ultraviolet (UV) filters in drinking water reservoirs in Southeast Queensland, Australia. Polydimethylsiloxane passive samplers were used to monitor 14 lakes over a 3-year period, focusing on seasonal variations and the influence of recreational activities such as petrol-powered boating and swimming. A total of 15 PAHs and six UV filters were detected, with chrysene (97%) and octyl salicylate (34%) being the most prevalent PAH and UV filter, respectively. Polycyclic aromatic hydrocarbon levels were statistically significantly higher in lakes permitting petrol-powered boating, especially during summer (p = 0.005 to 0.05). Lake Maroon and Lake Moogerah were the only sites that showed significantly higher PAH levels in summer (3.9 ± 1.1 and 4.0 ± 1.2 ng L-1, respectively) than winter (1.6 ± 0.61 and 1.5 ± 0.84, respectively). Ultraviolet filters were generally detected in higher levels in lakes allowing swimming, with Lake Moogerah and Lake Sommerset measuring UV filter concentrations of 20 ± 4.1 and 20 ± 11 ng L-1 in summer, respectively. Other lakes that do not permit swimming, such as Lake Maroon and Lake Samsonvale, also exhibited elevated UV filter levels, suggesting illegal swimming. These findings highlight the complexity of PAH and UV filter presence, influenced by multiple factors including lake size, recreational activity type, and seasonal variations. The levels of individual PAHs and UV filters in this study were below established freshwater guidelines. However, when considering their bioaccumulation potential and mixture toxicity, mitigating the impact of these substances on our environment and the organisms within it should be of priority.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH