Human umbilical cord matrix Wharton's jelly mesenchymal stem cells (WJ-MSCs) are commonly utilized in regenerative medicine due to their therapeutic benefits. However, the microenvironmental stress present in patients with hyperglycemia can significantly reduce mesenchymal stem cell (MSC) viability under high-glucose conditions in the body, ultimately reducing their therapeutic effectiveness. Enhancing the survival rate of MSCs following cell transplantation remains a crucial challenge. This study investigates whether Quantum Hyperlight (QHL) can counteract the detrimental effects of high glucose (HG), thereby improving MSC survival, proliferation, and mitochondrial function. We aimed to evaluate the effect of QHL on cellular viability, proliferation, and mitochondrial activity in WJ-MSCs exposed to HG. MSCs were cultured in a medium containing normal glucose (NG) (1 g/L) and HG (4.5 g/L). MSCs in the HG medium were exposed to QHL for 90 s or 180 s with an energy density of 2.4 Joules/cm