Positive influence of selenium on the modulation of ascorbate-glutathione cycle in salt stressed Setaria italica L.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Naveed Ul Mushtaq, Reiaz Ul Rehman, Seerat Saleem, Chandra Shekhar Seth, Inayatullah Tahir

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Journal of plant physiology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 113778

Soil salinity is a significant abiotic factor affecting crop yield and global distribution, hence selecting salt-tolerant crop species is crucial for food security. Foxtail millet is a resilient crop suitable for hilly, salinity, and drought-prone areas due to its ability to withstand environmental stressors. In this study, foxtail millet was subjected to high NaCl concentrations (150 mM and 200 mM) and selenium (1 μM, 5 μM, and 10 μM) as a stress mitigator. Increased salinity in foxtail plants hampered the growth with decreased pigment levels, increased H₂O₂ levels (153.6%), lipid peroxidation (32.1%), and electrolyte leakage (155.5%). The application of 1 μM Se positively influenced the root-to-shoot ratio (R) (59.2%), photosynthetic pigments, phenolic content (25.1%), flavonoid content (7%) and hence the antioxidant potential of the salt stressed plants there by decreasing the H₂O₂ levels (26.8%) and suggesting a greater ability to scavenge radicals. Both NaCl and Se induced the AsA-GSH pathway. Se supplementation significantly improved AsA-GSH pathway components such as AsA/DHA (40.8%) and GSH/GSSG ratios (39.6%) in salt-stressed foxtail millet, reducing oxidative stress and efficiently neutralizing H₂O₂. Gene expression validation confirmed that SiAPX, SiDHAR, SiMDHAR, and SiGR showed significant upregulation with 1 μM Se application in salt-stressed foxtail millet plants. However, higher Se concentrations (5 μM and 10 μM) led to a reduced fresh weight along with R, increased the MDA and H₂O₂ levels, and did not positively contribute to osmolyte accumulation or improve the AsA/DHA and GSH/GSSG ratios. Elevated Se levels also led to a decreased antioxidant potential. Among the enzymes of the AsA-GSH cycle, higher Se concentrations negatively affected APX, DHAR, MDHAR, and GR activities, indicating stress aggravation rather than mitigation at elevated doses.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH