Phosphate (Pi) starvation disrupts iron (Fe) nutrition at phenotypic, physiological, and transcriptional levels. The alteration of Fe homeostasis plays an important role in the adaptive response to Pi starvation. However, utilizing the antagonistic mechanism between P and Fe nutrition to improve adaptation to Pi deficiency in plants still needs to be explored. Here, we constructed inducible and constitutive expression of Fe regulators IMA1 and bHLH104, driven by the CaMV 35S promoter and the promoters of Pi-starvation responsive genes (proIPS1 and proPHT1
4), respectively. The Fe regulators bHLH104 and IMA1 were successfully upregulated in a constitutive and inducible manner under Pi deficiency in these transgenic plants. Regardless of Pi condition, upregulation of bHLH104 and IMA1 had no significant influence on primary root length or root Fe distribution. Nevertheless, the upregulation of bHLH104 and IMA1 induced Fe accumulation in the shoots of transgenic plants, particularly under Pi deficiency. Correspondingly, shoot chlorophyll content increased under Fe deficiency in the transgenic plants. In addition, in situ Fe