Trichomes are specialized epidermal outgrowths serving as protective barriers for plants against various stresses such as herbivore attacks. MYB-bHLH-WD40 complex is of great significance for unicellular trichome formation in Arabidopsis, whereas its role in the formation of multicellular trichomes in tomato remains largely unknown. In the present study, we identified that the R2R3-type MYB transcription factor SlMYB72 promotes the formation of type II, V, and VI trichomes through inhibiting the expression of SlCycB2, a repressor of trichome initiation. SlMYB75 is a negative regulator of trichome formation and positively regulates SlCycB2 expression. Interaction analyses showed that SlMYB72 and SlMYB75 can form MYB-bHLH-WD40 complexes with SlbHLH150 and SlTTG1, respectively, through mutual interactions. Dual-luciferase assay demonstrated that the regulatory functions of SlMYB72 and SlMYB75 in SlCycB2 expression can be enhanced by their corresponding MYB-bHLH-WD40 complexes. Interestingly, yeast-three-hybrid assay indicated that SlMYB75 competes with SlMYB72 for SlbHLH150 and SlTTG1, and counterbalances the down-regulation of SlCycB2 expression controlled by SlMYB72 alone, which is further confirmed by genetic hybrid experiments. These results reveal that SlMYB72 and SlMYB75 antagonistically regulate trichome formation and SlCycB2 expression through MYB-bHLH-WD40 complexes. These findings provide a novel perspective and theoretical basis for the formation of multicellular trichome in tomatoes and the development of highly resistant plants.