Leveraging deep learning for nonlinear shape representation in anatomically parameterized statistical shape models.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Behnaz Gheflati, Morteza Mirzaei, Hassan Rivaz, Sunil Rottoo

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : International journal of computer assisted radiology and surgery , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 131824

PURPOSE: Statistical shape models (SSMs) are widely used for morphological assessment of anatomical structures. However, a key limitation is the need for a clear relationship between the model's shape coefficients and clinically relevant anatomical parameters. To address this limitation, this paper proposes a novel deep learning-based anatomically parameterized SSM (DL-ANAT METHODS: Our approach utilizes a multilayer perceptron model trained on a synthetic femoral bone population to learn the nonlinear mapping between anatomical measurements and shape parameters. The trained model is then fine-tuned on a real bone dataset. We compare the performance of DL-ANAT RESULTS: When applied to a previously unseen femoral bone dataset, DL-ANAT CONCLUSION: The proposed DL-ANAT
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH