PURPOSE: Statistical shape models (SSMs) are widely used for morphological assessment of anatomical structures. However, a key limitation is the need for a clear relationship between the model's shape coefficients and clinically relevant anatomical parameters. To address this limitation, this paper proposes a novel deep learning-based anatomically parameterized SSM (DL-ANAT METHODS: Our approach utilizes a multilayer perceptron model trained on a synthetic femoral bone population to learn the nonlinear mapping between anatomical measurements and shape parameters. The trained model is then fine-tuned on a real bone dataset. We compare the performance of DL-ANAT RESULTS: When applied to a previously unseen femoral bone dataset, DL-ANAT CONCLUSION: The proposed DL-ANAT