Methamphetamine (METH) is a psychostimulant drug widely abused because of its addictive properties.Its impact on the central nervous system is a major area of interest due to its unique ability to cross the blood-brain barrier, facilitated by its dual water and lipid solubility. Studies have indicated that oxidative stress, neuroinflammation, neuronal apoptosis, and mitochondrial dysfunction are primary mechanisms of METH-induced neurotoxicity. Mitophagy, a process regulated by the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) induced kinase 1 (PINK1)/Parkin signaling pathway, has emerged as a critical mechanism for preserving mitochondrial function. Polysaccharides derived from bamboo fungus have shown potential in mitigating neurotoxicity. However, the role of these polysaccharides in ameliorating methamphetamine-induced neurotoxicity remains unclear. This study aimed to investigate whether polysaccharides could alleviate neurodegeneration in a chronic METH mice model and elucidate the underlying mechanisms and elucidate the mechanisms underlying METH-induced neuronal damage. Keywords: Polysaccharide
methamphetamine
neurodegeneration
mitochondrial autophagy
forensic toxicology.