ANN-ANFIS model for optimising methylic composite biodiesel from neem and castor oil and predicting emissions of the biodiesel blend.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Abinet Gosaye Ayanie, Noureddine Elboughdiri, Christopher C Enweremadu, Fayaz Hussain, Prabhu Paramasivam, Olusegun David Samuel, Amin Taheri-Garavand, Chao-Zhe Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 920.71 Men

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 143051

Researchers and stakeholders have shown interest in heterogeneous composite biodiesel (HCB) due to its enhanced fuel properties and environmental friendliness (EF). The lack of high viscosity datasets for parent hybrid oils has hindered their commercialisation. Reliable models are lacking to optimise the transesterification parameters for developing HCB, and the scarcity of predictive models has affected climate researchers and environmental experts. In this study, basic fuel properties were analysed, and models were developed models for the yield of HCB and kinematic viscosity (KV) for composite biodiesel/neem castor seed oil methyl ester (NCSOME) using Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS). Statistical indices such as computed coefficient of determination (R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH