The management of abscess wounds induced by antibiotic-resistant bacterial infections has become increasingly formidable due to the widespread overutilization and misuse of antimicrobial agents. This study presents an innovative dissolvable microneedle (MN) patch incorporating Au@ZnO/Ce nanocomposites and vancomycin (AZC/Van@MN), exhibiting robust antimicrobial and anti-inflammatory properties, meticulously engineered for the therapeutic intervention of abscess wounds. The developed AZC/Van@MN patch demonstrates exceptional biocompatibility as evidenced by comprehensive histopathological and hematological assessments. It effectively eradicates bacterial colonies through the synergistic action of Van and mild photothermal therapy (PTT, ≤42 °C). Transcriptomic analysis elucidates that the antibacterial mechanism involves the upregulation of riboflavin biosynthesis and the suppression of arginine biosynthesis pathways. Furthermore, AZC/Van@MN significantly reduces abscess dimensions, bacterial load, and inflammatory response, while simultaneously enhancing wound healing via accelerated re-epithelialization and angiogenesis. This double-edged MN patch represents a promising strategy for combating skin abscesses instigated by antibiotic-resistant bacteria.