Seesaw protein: Design of a protein that adopts interconvertible alternative functional conformations and its dynamics.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Toma Ikeda, Hiroki Konno, Tatsuya Niwa, Tatsuya Nojima, Hideki Taguchi, Ryusei Yamada, Souma Yamamoto

Ngôn ngữ: eng

Ký hiệu phân loại: 668.43 Protein plastics

Thông tin xuất bản: United States : Proceedings of the National Academy of Sciences of the United States of America , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 15196

According to classical Anfinsen's dogma, a protein folds into a single unique conformation with minimal Gibbs energy under physiological conditions. However, certain proteins may fold into two or more conformations from single amino acid sequences. Here, we designed a protein that adopts interconvertible alternative functional conformations, termed "seesaw" protein (SSP). An SSP was engineered by fusing GFP lacking the C-terminal β-strand and dihydrofolate reductase (DHFR) lacking the N-terminal β-strand with an overlapping linker, which can be competitively incorporated into either the GFP or the DHFR moiety. In vivo and biochemical analyses, including atomic force microscopy (AFM) imaging, demonstrated that the SSP adopts two alternative conformations, which can be biased by point mutations and ligand binding. The drastic conformational change upon the ligand binding was directly visualized by high-speed AFM. Furthermore, the balance of the seesaw can be reversibly changed depending on buffer conditions. In summary, our design strategy for SSP provides a unique direction for creating artificial proteins with on-off behaviors.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH