Principal Component Analysis in Dental Research.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kyungsup Shin, James C Thomas, Xian Jin Xie

Ngôn ngữ: eng

Ký hiệu phân loại: 004.338 Systems analysis and design, computer architecture, performance evaluation of real-time computers

Thông tin xuất bản: United States : The International journal of oral & maxillofacial implants , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 15560

Principal component analysis (PCA) is a statistical tool that condenses the information contained in a large group of independent variables to a more manageable number of variables. This is useful when performing an analysis on data sets with a large number of variables. PCA restructures the original independent variables into new variables called principal components that maximize the information present in the data. The principal components then act as a substitute for the independent variables in an analysis. The purpose of this article is to present PCA in an understandable way for researchers without advanced statistical and mathematical backgrounds. To solidify the comprehension of the process and provide a template for researchers, we present an extended step-by-step example of PCA in use on a fictitious peri-implantitis data set.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH