Density ratio estimation in machine learning

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Takafumi Kanamori, Masashi Sugiyama, Taiji Suzuki

Ngôn ngữ: eng

ISBN-10: 0521190177

ISBN-13: 978-0521190176

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: New York : Cambridge University Press, 2012.

Mô tả vật lý: xii, 329 p. : , ill. ; , 23 cm.

Bộ sưu tập: Công nghệ thông tin

ID: 157148

"Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as nonstationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification, and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting, and density ratio fitting as well as describing how these can be applied to machine learning. The book also provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning"-- Provided by publisher.
Includes bibliographical references (p. 309-325) and index.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH