Physics-Inspired Accuracy Estimator for Model-Docked Ligand Complexes.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Byung-Hyun Bae, Jungyoon Choi, Hahnbeom Park, Chaok Seok

Ngôn ngữ: eng

Ký hiệu phân loại: 006.663 *Programming languages for computer graphics

Thông tin xuất bản: United States : Journal of chemical theory and computation , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 15805

 Model docking, which refers to ligand docking into the protein model structures, is becoming a promising avenue in drug discovery with advances in artificial intelligence (AI)-based protein structure prediction. However, a significant challenge remains
  even when sampling was successful in model docking, typical docking score functions failed to identify correct solutions for two-thirds of them. This discrepancy between scoring and sampling majorly arises because these scoring functions poorly tolerate minor structural inaccuracies. In this work, we propose a deep neural network named DENOISer to address the scoring challenge in model-docking scenarios. In the network, ligand poses are ranked by the consensus score of two independent subnetworks: the
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH