Designing medical artificial intelligence systems for global use: focus on interoperability, scalability, and accessibility.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Rohan Khera, Evangelos K Oikonomou

Ngôn ngữ: eng

Ký hiệu phân loại: 004.21 Systems analysis and design

Thông tin xuất bản: Netherlands : Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 159129

Advances in artificial intelligence (AI) and machine learning systems promise faster, more efficient, and more personalized care. While many of these models are built on the premise of improving access to the timely screening, diagnosis, and treatment of cardiovascular disease, their validity and accessibility across diverse and international cohorts remain unknown. In this mini-review article, we summarize key obstacles in the effort to design AI systems that will be scalable, accessible, and accurate across distinct geographical and temporal settings. We discuss representativeness, interoperability, quality assurance, and the importance of vendor-agnostic data types that will be available to end-users across the globe. These topics illustrate how the timely integration of these principles into AI development is crucial to maximizing the global benefits of AI in cardiology.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH