Circulating metabolite levels partly reflect the state of human health and diseases and can be impacted by genetic determinants. Hundreds of loci associated with circulating metabolites have been identified
however, most findings focus on predominantly European ancestry or single-study analyses. Leveraging the rich metabolomics resources generated by the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program, we harmonized and accessibly cataloged 1,729 circulating metabolites among 25,058 ancestrally diverse samples. We provided a set of reasonable strategies for outlier and imputation handling to process metabolite data. Following the practical analysis framework, we further performed a genome-wide association analysis on 1,135 selected metabolites using whole genome sequencing data from 16,359 individuals passing the quality control filters, and discovered 1,778 independent loci associated with 667 metabolites. Among 108 novel locus-metabolite pairs, we detected not only novel loci within previously implicated metabolite associated genes but also novel genes (such as