Ovarian cancer (OC) is a highly malignant gynecological tumor, and its effective treatment is frequently impeded by drug resistance and recurrent tumor growth. The reprogramming of glutamine metabolism in ovarian cancer is closely associated with tumor progression and the immunosuppressive tumor microenvironment. Recently, targeting metabolic reprogramming has emerged as a promising approach for cancer therapy. However, the application of such therapies is often constrained by their significant toxicity to normal tissues. In this study, we fabricated folate-targeted nanoparticles (FA-DCNPs) that co-encapsulate the glutamine metabolism inhibitor 6-diazo-5-oxo-L-norleucine (DON) and calcium carbonate (CaCO