Unveiling the impact of preparation methods, matrix/carrier type selection and drug loading on the supersaturation performance of amorphous solid dispersions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Panagiotis Barmpalexis, Melina Chatzitheodoridou, Christina Kalogeri, Afroditi Kapourani, Ioannis Pantazos, Vasiliki Valkanioti

Ngôn ngữ: eng

Ký hiệu phân loại: 594.38 *Pulmonata

Thông tin xuất bản: Netherlands : International journal of pharmaceutics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 160607

Amorphous solid dispersions (ASDs) are widely recognized for their potential to enhance the solubility of poorly water-soluble drugs, with factors such as molecular mobility, intermolecular interactions, and storage conditions playing critical roles in their performance. However, the influence of preparation methods on their performance remains underexplored, especially regarding their supersaturation . To address this gap, the present study systematically investigates ASDs of ibuprofen (IBU, used as a model drug) prepared using two widely utilized techniques (solvent evaporation, SE, and melt-quench cooling, M-QC). Three different matrices/carriers (Soluplus®, SOL, povidone, PVP, and copovidone, PVPVA) were employed to evaluate the combined influence of preparation method, matrix/carrier type, and drug loading on ASD performance. Supersaturation behavior during dissolution, particularly its dependence on the Sink Index (SI), was a key focus. All ASDs showed successful amorphization, but molecular near-order structures differed based on the preparation method. ATR-FTIR spectroscopy revealed stronger molecular interactions in M-QC ASDs (compared to SE). Dissolution studies under supersaturation conditions (SI = 0.1 and SI = 0.2) highlighted significant performance differences. M-QC ASDs consistently exhibited higher in vitro AUC
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH