Biocompatible EDOT-Pyrrole Conjugated Conductive Polymer Coating for Augmenting Cell Attachment, Activity, and Differentiation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Luis Flores, Samantha Garcia, Amanda Gomez, Eduardo Manuel Martinez-Cartagena, Nicolas Muzzio, Gary Newman, Gabriela Romero, Shrihari Sankarasubramanian, Athena Santi, Mohamed Shahid Usen Nazreen, Delina Yirgaalem

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : ACS applied bio materials , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 160664

Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation. The synthesized copolymer was characterized by Raman spectroscopy and dynamic light scattering. Its electrochemical properties were studied using galvanostatic charge-discharge (GCD) and voltammetry. PPy-PEDOT:PSS-coated hydrogels were characterized by Raman spectroscopy and atomic force microscopy, and protein adsorption was assessed using a quartz crystal microbalance with dissipation monitoring. Attachment and differentiation of the ND7/23 neuron hybrid cell line and C2C12 myoblasts were evaluated by cell cytoskeleton staining and quantification of morphological parameters. Viability was assessed by live/dead staining using flow cytometry. Cortex neural activity was studied by calcium ion influx that could be detected through the dynamic fluorescence changes of Fluo-4. The PPy-PEDOT:PSS coating supported cell attachment and differentiation and was nontoxic to cells. Primary neurons attached and remained responsive to electrical stimulation. Altogether, the biocompatible copolymer PPy-PEDOT:PSS is a simple yet effective alternative for hydrogel coating and presents great potential as an interface for nervous and other electrically excitable tissues.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH