Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Victor Chernozhukov, Ivan Fernandez-Val

Ngôn ngữ: eng

Ký hiệu phân loại: 372.79 Elementary education

Thông tin xuất bản: 2009

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161365

Comment: 41 pages, 9 figuresQuantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many economic and financial applications, such as conditional value-at-risk, production efficiency, and adjustment bands in (S,s) models. In this paper we provide feasible inference tools for extremal conditional quantile models that rely upon extreme value approximations to the distribution of self-normalized quantile regression statistics. The methods are simple to implement and can be of independent interest even in the non-regression case. We illustrate the results with two empirical examples analyzing extreme fluctuations of a stock return and extremely low percentiles of live infants' birthweights in the range between 250 and 1500 grams.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH