Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Alexandre Belloni, Victor Chernozhukov, Kengo Kato

Ngôn ngữ: eng

Ký hiệu phân loại: 492.487 Afro-Asiatic languages Semitic languages

Thông tin xuất bản: 2013

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161393

 Comment: includes supplementary material
  2 figuresWe develop uniformly valid confidence regions for regression coefficients in a high-dimensional sparse median regression model with homoscedastic errors. Our methods are based on a moment equation that is immunized against non-regular estimation of the nuisance part of the median regression function by using Neyman's orthogonalization. We establish that the resulting instrumental median regression estimator of a target regression coefficient is asymptotically normally distributed uniformly with respect to the underlying sparse model and is semi-parametrically efficient. We also generalize our method to a general non-smooth Z-estimation framework with the number of target parameters $p_1$ being possibly much larger than the sample size $n$. We extend Huber's results on asymptotic normality to this setting, demonstrating uniform asymptotic normality of the proposed estimators over $p_1$-dimensional rectangles, constructing simultaneous confidence bands on all of the $p_1$ target parameters, and establishing asymptotic validity of the bands uniformly over underlying approximately sparse models. Keywords: Instrument
  Post-selection inference
  Sparsity
  Neyman's Orthogonal Score test
  Uniformly valid inference
  Z-estimation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH