Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Alexandre Belloni, Victor Chernozhukov, Kengo Kato

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2013

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161407

This work proposes new inference methods for a regression coefficient of interest in a (heterogeneous) quantile regression model. We consider a high-dimensional model where the number of regressors potentially exceeds the sample size but a subset of them suffice to construct a reasonable approximation to the conditional quantile function. The proposed methods are (explicitly or implicitly) based on orthogonal score functions that protect against moderate model selection mistakes, which are often inevitable in the approximately sparse model considered in the present paper. We establish the uniform validity of the proposed confidence regions for the quantile regression coefficient. Importantly, these methods directly apply to more than one variable and a continuum of quantile indices. In addition, the performance of the proposed methods is illustrated through Monte-Carlo experiments and an empirical example, dealing with risk factors in childhood malnutrition.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH