Nonlinear Factor Models for Network and Panel Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mingli Chen, Iván Fernández-Val, Martin Weidner

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2014

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161420

Comment: 49 pages, 6 tables, the changes in v4 include numerical results with more simulations and minor edits in the main text and appendixFactor structures or interactive effects are convenient devices to incorporate latent variables in panel data models. We consider fixed effect estimation of nonlinear panel single-index models with factor structures in the unobservables, which include logit, probit, ordered probit and Poisson specifications. We establish that fixed effect estimators of model parameters and average partial effects have normal distributions when the two dimensions of the panel grow large, but might suffer of incidental parameter bias. We show how models with factor structures can also be applied to capture important features of network data such as reciprocity, degree heterogeneity, homophily in latent variables and clustering. We illustrate this applicability with an empirical example to the estimation of a gravity equation of international trade between countries using a Poisson model with multiple factors.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH