Monge-Kantorovich Depth, Quantiles, Ranks, and Signs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Victor Chernozhukov, Alfred Galichon, Marc Hallin, Marc Henry

Ngôn ngữ: eng

Ký hiệu phân loại: 512.87 Algebra

Thông tin xuất bản: 2014

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161422

Comment: 30 pages, 2 figuresWe propose new concepts of statistical depth, multivariate quantiles, ranks and signs, based on canonical transportation maps between a distribution of interest on $R^d$ and a reference distribution on the $d$-dimensional unit ball. The new depth concept, called Monge-Kantorovich depth, specializes to halfspace depth in the case of spherical distributions, but, for more general distributions, differs from the latter in the ability for its contours to account for non convex features of the distribution of interest. We propose empirical counterparts to the population versions of those Monge-Kantorovich depth contours, quantiles, ranks and signs, and show their consistency by establishing a uniform convergence property for empirical transport maps, which is of independent interest.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH