Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Victor Chernozhukov, Christian Hansen, Martin Spindler

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2015

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 161431

Comment: American Economic Review 2015, Papers and ProceedingsIn this note, we offer an approach to estimating causal/structural parameters in the presence of many instruments and controls based on methods for estimating sparse high-dimensional models. We use these high-dimensional methods to select both which instruments and which control variables to use. The approach we take extends BCCH2012, which covers selection of instruments for IV models with a small number of controls, and extends BCH2014, which covers selection of controls in models where the variable of interest is exogenous conditional on observables, to accommodate both a large number of controls and a large number of instruments. We illustrate the approach with a simulation and an empirical example. Technical supporting material is available in a supplementary online appendix.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH