Adaptive estimation for some nonparametric instrumental variable models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Fabian Dunker

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2015

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161459

The problem of endogeneity in statistics and econometrics is often handled by introducing instrumental variables (IV) which fulfill the mean independence assumption, i.e. the unobservable is mean independent of the instruments. When full independence of IV's and the unobservable is assumed, nonparametric IV regression models and nonparametric demand models lead to nonlinear integral equations with unknown integral kernels. We prove convergence rates for the mean integrated square error of the iteratively regularized Newton method applied to these problems. Compared to related results we derive stronger convergence results that rely on weaker nonlinearity restrictions. We demonstrate in numerical simulations for a nonparametric IV regression that the method produces better results than the standard model.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH