On the Non-Asymptotic Properties of Regularized M-estimators

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Demian Pouzo

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2015

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161464

 Comment: 75 pagesWe propose a general framework for regularization in M-estimation problems under time dependent (absolutely regular-mixing) data which encompasses many of the existing estimators. We derive non-asymptotic concentration bounds for the regularized M-estimator. Our results exhibit a variance-bias trade-off, with the variance term being governed by a novel measure of the complexity of the parameter set. We also show that the mixing structure affect the variance term by scaling the number of observations
  depending on the decay rate of the mixing coefficients, this scaling can even affect the asymptotic behavior. Finally, we propose a data-driven method for choosing the tuning parameters of the regularized estimator which yield the same (up to constants) concentration bound as one that optimally balances the (squared) bias and variance terms. We illustrate the results with several canonical examples.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH