Optimal Data Collection for Randomized Control Trials

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Pedro Carneiro, Sokbae Lee, Daniel Wilhelm

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2016

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 161477

Comment: 54 pages, 1 figureIn a randomized control trial, the precision of an average treatment effect estimator can be improved either by collecting data on additional individuals, or by collecting additional covariates that predict the outcome variable. We propose the use of pre-experimental data such as a census, or a household survey, to inform the choice of both the sample size and the covariates to be collected. Our procedure seeks to minimize the resulting average treatment effect estimator's mean squared error, subject to the researcher's budget constraint. We rely on a modification of an orthogonal greedy algorithm that is conceptually simple and easy to implement in the presence of a large number of potential covariates, and does not require any tuning parameters. In two empirical applications, we show that our procedure can lead to substantial gains of up to 58%, measured either in terms of reductions in data collection costs or in terms of improvements in the precision of the treatment effect estimator.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH