Should I stay or should I go? A latent threshold approach to large-scale mixture innovation models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Martin Feldkircher, Florian Huber, Gregor Kastner

Ngôn ngữ: eng

Ký hiệu phân loại: 001.43 Historical, descriptive, experimental methods

Thông tin xuất bản: 2016

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161494

This paper proposes a straightforward algorithm to carry out inference in large time-varying parameter vector autoregressions (TVP-VARs) with mixture innovation components for each coefficient in the system. We significantly decrease the computational burden by approximating the latent indicators that drive the time-variation in the coefficients with a latent threshold process that depends on the absolute size of the shocks. The merits of our approach are illustrated with two applications. First, we forecast the US term structure of interest rates and demonstrate forecast gains of the proposed mixture innovation model relative to other benchmark models. Second, we apply our approach to US macroeconomic data and find significant evidence for time-varying effects of a monetary policy tightening.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH