Smoothed estimating equations for instrumental variables quantile regression

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: David M Kaplan, Yixiao Sun

Ngôn ngữ: eng

Ký hiệu phân loại: 526.5 Mathematical geography

Thông tin xuất bản: 2016

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 161508

 Comment: Authors' accepted manuscript
  forthcoming in Econometric Theory, copyright Cambridge University Press, published version at http://dx.doi.org/10.1017/S0266466615000407The moment conditions or estimating equations for instrumental variables quantile regression involve the discontinuous indicator function. We instead use smoothed estimating equations (SEE), with bandwidth $h$. We show that the mean squared error (MSE) of the vector of the SEE is minimized for some $h>
 0$, leading to smaller asymptotic MSE of the estimating equations and associated parameter estimators. The same MSE-optimal $h$ also minimizes the higher-order type I error of a SEE-based $\chi^2$ test and increases size-adjusted power in large samples. Computation of the SEE estimator also becomes simpler and more reliable, especially with (more) endogenous regressors. Monte Carlo simulations demonstrate all of these superior properties in finite samples, and we apply our estimator to JTPA data. Smoothing the estimating equations is not just a technical operation for establishing Edgeworth expansions and bootstrap refinements
  it also brings the real benefits of having more precise estimators and more powerful tests. Code for the estimator, simulations, and empirical examples is available from the first author's website.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH