Fractional order statistic approximation for nonparametric conditional quantile inference

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Matt Goldman, David M Kaplan

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2016

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161509

 Comment: Authors' accepted manuscript (Journal of Econometrics)
  DOI TBDUsing and extending fractional order statistic theory, we characterize the $O(n^{-1})$ coverage probability error of the previously proposed confidence intervals for population quantiles using $L$-statistics as endpoints in Hutson (1999). We derive an analytic expression for the $n^{-1}$ term, which may be used to calibrate the nominal coverage level to get $O\bigl(n^{-3/2}[\log(n)]^3\bigr)$ coverage error. Asymptotic power is shown to be optimal. Using kernel smoothing, we propose a related method for nonparametric inference on conditional quantiles. This new method compares favorably with asymptotic normality and bootstrap methods in theory and in simulations. Code is available from the second author's website for both unconditional and conditional methods, simulations, and empirical examples.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH