Optimal Invariant Tests in an Instrumental Variables Regression With Heteroskedastic and Autocorrelated Errors

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Marcelo J Moreira, Geert Ridder, Mahrad Sharifvaghefi

Ngôn ngữ: eng

Ký hiệu phân loại: 512.88 Algebra

Thông tin xuất bản: 2017

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161546

This paper uses model symmetries in the instrumental variable (IV) regression to derive an invariant test for the causal structural parameter. Contrary to popular belief, we show that there exist model symmetries when equation errors are heteroskedastic and autocorrelated (HAC). Our theory is consistent with existing results for the homoskedastic model (Andrews, Moreira, and Stock (2006) and Chamberlain (2007)). We use these symmetries to propose the conditional integrated likelihood (CIL) test for the causality parameter in the over-identified model. Theoretical and numerical findings show that the CIL test performs well compared to other tests in terms of power and implementation. We recommend that practitioners use the Anderson-Rubin (AR) test in the just-identified model, and the CIL test in the over-identified model.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH