Unbiased Shrinkage Estimation

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jann Spiess

Ngôn ngữ: eng

Ký hiệu phân loại: 526.5 Mathematical geography

Thông tin xuất bản: 2017

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161566

Comment: Updated title and abstract, substance unchangedShrinkage estimation usually reduces variance at the cost of bias. But when we care only about some parameters of a model, I show that we can reduce variance without incurring bias if we have additional information about the distribution of covariates. In a linear regression model with homoscedastic Normal noise, I consider shrinkage estimation of the nuisance parameters associated with control variables. For at least three control variables and exogenous treatment, I establish that the standard least-squares estimator is dominated with respect to squared-error loss in the treatment effect even among unbiased estimators and even when the target parameter is low-dimensional. I construct the dominating estimator by a variant of James-Stein shrinkage in a high-dimensional Normal-means problem. It can be interpreted as an invariant generalized Bayes estimator with an uninformative (improper) Jeffreys prior in the target parameter.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH