Is completeness necessary? Estimation in nonidentified linear models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Andrii Babii, Jean-Pierre Florens

Ngôn ngữ: eng

Ký hiệu phân loại: 519.7 Programming

Thông tin xuất bản: 2017

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161572

Modern data analysis depends increasingly on estimating models via flexible high-dimensional or nonparametric machine learning methods, where the identification of structural parameters is often challenging and untestable. In linear settings, this identification hinges on the completeness condition, which requires the nonsingularity of a high-dimensional matrix or operator and may fail for finite samples or even at the population level. Regularized estimators provide a solution by enabling consistent estimation of structural or average structural functions, sometimes even under identification failure. We show that the asymptotic distribution in these cases can be nonstandard. We develop a comprehensive theory of regularized estimators, which include methods such as high-dimensional ridge regularization, gradient descent, and principal component analysis (PCA). The results are illustrated for high-dimensional and nonparametric instrumental variable regressions and are supported through simulation experiments.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH