Inference on Estimators defined by Mathematical Programming

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yu-Wei Hsieh, Xiaoxia Shi, Matthew Shum

Ngôn ngữ: eng

Ký hiệu phân loại: 005.116 +*Constraint programming

Thông tin xuất bản: 2017

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161578

 We propose an inference procedure for estimators defined by mathematical programming problems, focusing on the important special cases of linear programming (LP) and quadratic programming (QP). In these settings, the coefficients in both the objective function and the constraints of the mathematical programming problem may be estimated from data and hence involve sampling error. Our inference approach exploits the characterization of the solutions to these programming problems by complementarity conditions
  by doing so, we can transform the problem of doing inference on the solution of a constrained optimization problem (a non-standard inference problem) into one involving inference based on a set of inequalities with pre-estimated coefficients, which is much better understood. We evaluate the performance of our procedure in several Monte Carlo simulations and an empirical application to the classic portfolio selection problem in finance.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH