Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael Knaus, Michael Lechner, Anthony Strittmatter

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: 2017

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161596

We systematically investigate the effect heterogeneity of job search programmes for unemployed workers. To investigate possibly heterogeneous employment effects, we combine non-experimental causal empirical models with Lasso-type estimators. The empirical analyses are based on rich administrative data from Swiss social security records. We find considerable heterogeneities only during the first six months after the start of training. Consistent with previous results of the literature, unemployed persons with fewer employment opportunities profit more from participating in these programmes. Furthermore, we also document heterogeneous employment effects by residence status. Finally, we show the potential of easy-to-implement programme participation rules for improving average employment effects of these active labour market programmes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH