A Justification of Conditional Confidence Intervals

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Eric Beutner, Alexander Heinemann, Stephan Smeekes

Ngôn ngữ: eng

Ký hiệu phân loại: 234.7 Justification

Thông tin xuất bản: 2017

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161598

To quantify uncertainty around point estimates of conditional objects such as conditional means or variances, parameter uncertainty has to be taken into account. Attempts to incorporate parameter uncertainty are typically based on the unrealistic assumption of observing two independent processes, where one is used for parameter estimation, and the other for conditioning upon. Such unrealistic foundation raises the question whether these intervals are theoretically justified in a realistic setting. This paper presents an asymptotic justification for this type of intervals that does not require such an unrealistic assumption, but relies on a sample-split approach instead. By showing that our sample-split intervals coincide asymptotically with the standard intervals, we provide a novel, and realistic, justification for confidence intervals of conditional objects. The analysis is carried out for a rich class of time series models.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH