Artificial Intelligence as Structural Estimation: Economic Interpretations of Deep Blue, Bonanza, and AlphaGo

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mitsuru Igami

Ngôn ngữ: eng

Ký hiệu phân loại: 006.3 Artificial intelligence

Thông tin xuất bản: 2017

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 161633

 Artificial intelligence (AI) has achieved superhuman performance in a growing number of tasks, but understanding and explaining AI remain challenging. This paper clarifies the connections between machine-learning algorithms to develop AIs and the econometrics of dynamic structural models through the case studies of three famous game AIs. Chess-playing Deep Blue is a calibrated value function, whereas shogi-playing Bonanza is an estimated value function via Rust's (1987) nested fixed-point method. AlphaGo's "supervised-learning policy network" is a deep neural network implementation of Hotz and Miller's (1993) conditional choice probability estimation
  its "reinforcement-learning value network" is equivalent to Hotz, Miller, Sanders, and Smith's (1994) conditional choice simulation method. Relaxing these AIs' implicit econometric assumptions would improve their structural interpretability.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH