Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian VARs?

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Martin Feldkircher, Luis Gruber, Florian Huber, Gregor Kastner

Ngôn ngữ: eng

Ký hiệu phân loại: 378.15 Specific levels of higher education, evening school

Thông tin xuất bản: 2017

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161639

We assess the relationship between model size and complexity in the time-varying parameter VAR framework via thorough predictive exercises for the Euro Area, the United Kingdom and the United States. It turns out that sophisticated dynamics through drifting coefficients are important in small data sets, while simpler models tend to perform better in sizeable data sets. To combine the best of both worlds, novel shrinkage priors help to mitigate the curse of dimensionality, resulting in competitive forecasts for all scenarios considered. Furthermore, we discuss dynamic model selection to improve upon the best performing individual model for each point in time.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH