Quasi-Oracle Estimation of Heterogeneous Treatment Effects

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xinkun Nie, Stefan Wager

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2017

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161701

 Comment: Biometrika, forthcomingFlexible estimation of heterogeneous treatment effects lies at the heart of many statistical challenges, such as personalized medicine and optimal resource allocation. In this paper, we develop a general class of two-step algorithms for heterogeneous treatment effect estimation in observational studies. We first estimate marginal effects and treatment propensities in order to form an objective function that isolates the causal component of the signal. Then, we optimize this data-adaptive objective function. Our approach has several advantages over existing methods. From a practical perspective, our method is flexible and easy to use: In both steps, we can use any loss-minimization method, e.g., penalized regression, deep neural networks, or boosting
  moreover, these methods can be fine-tuned by cross validation. Meanwhile, in the case of penalized kernel regression, we show that our method has a quasi-oracle property: Even if the pilot estimates for marginal effects and treatment propensities are not particularly accurate, we achieve the same error bounds as an oracle who has a priori knowledge of these two nuisance components. We implement variants of our approach based on penalized regression, kernel ridge regression, and boosting in a variety of simulation setups, and find promising performance relative to existing baselines.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH