Cointegration in functional autoregressive processes

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Massimo Franchi, Paolo Paruolo

Ngôn ngữ: eng

Ký hiệu phân loại: 515.7 Functional analysis

Thông tin xuất bản: 2017

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161706

This paper defines the class of $\mathcal{H}$-valued autoregressive (AR) processes with a unit root of finite type, where $\mathcal{H}$ is an infinite dimensional separable Hilbert space, and derives a generalization of the Granger-Johansen Representation Theorem valid for any integration order $d=1,2,\dots$. An existence theorem shows that the solution of an AR with a unit root of finite type is necessarily integrated of some finite integer $d$ and displays a common trends representation with a finite number of common stochastic trends of the type of (cumulated) bilateral random walks and an infinite dimensional cointegrating space. A characterization theorem clarifies the connections between the structure of the AR operators and $(i)$ the order of integration, $(ii)$ the structure of the attractor space and the cointegrating space, $(iii)$ the expression of the cointegrating relations, and $(iv)$ the Triangular representation of the process. Except for the fact that the number of cointegrating relations that are integrated of order 0 is infinite, the representation of $\mathcal{H}$-valued ARs with a unit root of finite type coincides with that of usual finite dimensional VARs, which corresponds to the special case $\mathcal{H}=\mathbb{R}^p$.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH