Generalized Laplace Inference in Multiple Change-Points Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Alessandro Casini, Pierre Perron

Ngôn ngữ: eng

Ký hiệu phân loại: 517.35 [Unassigned]

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 161864

 Under the classical long-span asymptotic framework we develop a class of Generalized Laplace (GL) inference methods for the change-point dates in a linear time series regression model with multiple structural changes analyzed in, e.g., Bai and Perron (1998). The GL estimator is defined by an integration rather than optimization-based method and relies on the least-squares criterion function. It is interpreted as a classical (non-Bayesian) estimator and the inference methods proposed retain a frequentist interpretation. This approach provides a better approximation about the uncertainty in the data of the change-points relative to existing methods. On the theoretical side, depending on some input (smoothing) parameter, the class of GL estimators exhibits a dual limiting distribution
  namely, the classical shrinkage asymptotic distribution, or a Bayes-type asymptotic distribution. We propose an inference method based on Highest Density Regions using the latter distribution. We show that it has attractive theoretical properties not shared by the other popular alternatives, i.e., it is bet-proof. Simulations confirm that these theoretical properties translate to better finite-sample performance.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH