Statistical inference for autoregressive models under heteroscedasticity of unknown form

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ke Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 331.211 Labor economics

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161877

This paper provides an entire inference procedure for the autoregressive model under (conditional) heteroscedasticity of unknown form with a finite variance. We first establish the asymptotic normality of the weighted least absolute deviations estimator (LADE) for the model. Second, we develop the random weighting (RW) method to estimate its asymptotic covariance matrix, leading to the implementation of the Wald test. Third, we construct a portmanteau test for model checking, and use the RW method to obtain its critical values. As a special weighted LADE, the feasible adaptive LADE (ALADE) is proposed and proved to have the same efficiency as its infeasible counterpart. The importance of our entire methodology based on the feasible ALADE is illustrated by simulation results and the real data analysis on three U.S. economic data sets.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH