Varying Random Coefficient Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Christoph Breunig

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161878

This paper provides a new methodology to analyze unobserved heterogeneity when observed characteristics are modeled nonlinearly. The proposed model builds on varying random coefficients (VRC) that are determined by nonlinear functions of observed regressors and additively separable unobservables. This paper proposes a novel estimator of the VRC density based on weighted sieve minimum distance. The main example of sieve bases are Hermite functions which yield a numerically stable estimation procedure. This paper shows inference results that go beyond what has been shown in ordinary RC models. We provide in each case rates of convergence and also establish pointwise limit theory of linear functionals, where a prominent example is the density of potential outcomes. In addition, a multiplier bootstrap procedure is proposed to construct uniform confidence bands. A Monte Carlo study examines finite sample properties of the estimator and shows that it performs well even when the regressors associated to RC are far from being heavy tailed. Finally, the methodology is applied to analyze heterogeneity in income elasticity of demand for housing.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH