Estimating Treatment Effects in Mover Designs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Peter Hull

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2018

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 161896

Researchers increasingly leverage movement across multiple treatments to estimate causal effects. While these "mover regressions" are often motivated by a linear constant-effects model, it is not clear what they capture under weaker quasi-experimental assumptions. I show that binary treatment mover regressions recover a convex average of four difference-in-difference comparisons and are thus causally interpretable under a standard parallel trends assumption. Estimates from multiple-treatment models, however, need not be causal without stronger restrictions on the heterogeneity of treatment effects and time-varying shocks. I propose a class of two-step estimators to isolate and combine the large set of difference-in-difference quasi-experiments generated by a mover design, identifying mover average treatment effects under conditional-on-covariate parallel trends and effect homogeneity restrictions. I characterize the efficient estimators in this class and derive specification tests based on the model's overidentifying restrictions. Future drafts will apply the theory to the Finkelstein et al. (2016) movers design, analyzing the causal effects of geography on healthcare utilization.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH